GENERATION-IV SODIUM-COOLED FAST REACTORS AND THE ASTRID PROJECT

French-Swedish Seminar on Future Nuclear Systems

Pascal Anzieu
pascal.anzieu@cea.fr

KTH, STOCKHOLM, DECEMBER 3, 2013
For nuclear energy sustainability
Promotes fast neutron reactor & closed fuel cycles
No longer focused on technologies, but on existing European projects of construction

- GIF gathers 10 countries; They study 6 systems

<table>
<thead>
<tr>
<th></th>
<th>Canada</th>
<th>Europe</th>
<th>France</th>
<th>Japan</th>
<th>South Korea</th>
<th>Switzerland</th>
<th>USA</th>
<th>China</th>
<th>South Africa</th>
<th>Brazil</th>
<th>Russia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very-High-Temperature gas Reactor</td>
<td>🟡</td>
</tr>
<tr>
<td>Gas-cooled Fast Reactor</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td></td>
<td>🟡</td>
<td>🟡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sodium-cooled Fast Reactor</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supercritical-Water-cooled Reactor</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td></td>
<td>🟡</td>
<td>🟡</td>
<td></td>
<td></td>
<td>🟡</td>
</tr>
<tr>
<td>Lead-cooled Fast Reactor</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td>🟡</td>
<td></td>
<td></td>
<td>🟡</td>
<td></td>
<td></td>
<td></td>
<td>🟡</td>
</tr>
<tr>
<td>Molten Salt Reactor</td>
<td>🟡</td>
<td>🟡</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>🟡</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Other organizations: AIEA/INPRO (+ 🇮🇳), IFNEC, OCDE/AEN

Stockholm, Dec 2013
SODIUM-COOLED FAST REACTOR SYSTEM

- "400 year-reactor" of operation for SFRs around the world

POOL Type
- China
- France
- India
- Korea
- Russia

LOOP Type
- Japan
A LONG SFR STORY: FRANCE, RUSSIA, AND OTHERS

RAPSODIE 20 MWth (1967-1983)
BR10 (1959-2002) and BOR60 1968 →

PHENIX 250 MWe (1973-2009)
BN350 150 MWe (1973-1999)

SUPERPHENIX 1200 MWe (1985-1998)
BN600 600 MWe 1980 →

Stockholm, Dec 2013
WHAT DO WE EXPECT FROM GEN-IV SYSTEMS? (1/2)

• **Sustainability**
 - GEN-IV systems shall
 - Make the best use of U resource
 - Be able of Pu multi-recycling, and
 - Have the capability to transmute minor actinides
 - This calls for fast neutron reactors and a closed fuel cycle.

• **Safety**
 - Improved and robust safety demonstration compared to former Fast Reactors
 - Enhanced prevention of whole core melting accidents
 - Exclusion in a credible way energetic accident sequences
 - Prevention and mitigation of risks due to sodium chemical reactivity
 - Robustness to external hazards
 - Safety level at least equivalent to 3\(^{rd}\) generation reactors
 - And taking into account lessons learnt from Fukushima accident
• Economy
 - GENIV systems shall be competitive, for the same performance level, compared to other sources of energy at the time they will be put into operation.
 - This means a lot of efforts with regard to investment costs, but also to availability and operation costs.

• Proliferation resistance
 - Importance of intrinsic and institutional barriers
 - Safeguards have to be fully integrated from the initial planning through design, construction and operation.
R&D OBJECTIVES AT CEA

- Improvement of the confinement control, including Na risk (**safety**)
- Elimination of large sodium-water reactions (availability, **economics**, **safety**)
- Improvement of decay heat removal (**safety**)
- Improvement of reactivity control (**safety**)
- Optimization of handling system (availability, **economics**)
- Simplification (**economics**, ISIR)
- Avoid any corium re-criticality (**safety**)
- + Material (**performance**, lifetime, **safety**)
- + Improvement of reliability

Stockholm, Dec 2013
AN ATTRACTIVE CORE WITH ENHANCED SAFETY

Feedback for SPX and EFR: Accidents leading to core melting
- Rod withdrawal
- Unprotected Loss of Flow
 - Reduce fuel reactivity loss per cycle
 - Reduce sodium void worth

- Large pins + small-diameter spacing wire
 - Increase fuel fraction
 - Decrease sodium fraction
 - Lower voiding effect

- Heterogeneous core concept with an optimized sodium plenum
 - Global sodium void worth strongly reduced to near zero
Control Rod Withdrawal

No fuel melting

Unprotected Loss of Flow

Na temperature evolution

Standard Core

ASTRID Core

No Sodium boiling

Stockholm, Dec 2013
Program

- Modelling of general operation of the Nuclear Steam Supply System (CATHARE3 and TRIO-U codes)
- Study of means to remove decay heat (DHR)
- Development of models for Probabilistic Safety Assessment (PSA) in design phase
- Inclusion of external hazards (extreme situations)

Innovations

- DHR through the main vessel + direct DHR in cold plenum
- PSA by design
- Study of a Total Instantaneous S/A Blockage
- Modelling of fluid-structure interaction

Stockholm, Dec 2013
Program
- Enhanced resistance to severe accidents
- Consolidating expertise on severe accident codes
- Definition and realization of complex and onerous tests
- Study of equipment to mitigate consequences (core catcher)

Innovations
- Robust approach for safety demonstration
 - Evaluation of different scenario
 - Estimate of cliff-edge effects
- Core catcher that ensures:
 - No re-criticality
 - Post accident heat removal capability

Stockholm, Dec 2013
CONCLUSIONS

• Generation-IV systems call for innovation
 - To enhance safety
 - To keep economy at market level

• Astrid project is a good example of this trend through:
 - Innovation in components
 - Innovation in modelling
Thank you for your attention